1,914 research outputs found

    Late-season nitrogen applications in high-latitude strawberry nurseries improve transplant production pattern in warm regions

    Get PDF
    The influence of late-season nitrogen (N) applications on the fruiting pattern of strawberry runner plants of ‘Camarosa’ was determined over three growing seasons. Experiments were carried out in highlatitude nurseries in northern California and fruit production trials were established in southern California. A total of 80 kg/ha of foliar nitrogen was delivered in three applications to the nursery in late summer. Late-season foliar nitrogen applications: (1) increased early yields (+22% on average) as well as the number of early marketable fruit, (2) did not affect total season yields, fruit size, appearance and firmness and (3) resulted in greater N concentration in leaves, crowns and roots. Runner plants with leaf N concentration within the sufficiency range (1.9 - 2.8% of dry mass) produced the highest early yields. Total nonstructural carbohydrate concentrations decreased in most of the N-treated plants. Apparently, nursery late-season foliar nitrogen applications enhance N mobilization to crown and root, stimulate plant activity during the period of flower differentiation after planting, accelerating flower development and contributing to the advancement of fruit production

    The Role of Column Density in the Formation of Stars and Black Holes

    Full text link
    The stellar mass in disk galaxies scales approximately with the fourth power of the rotation velocity, and the masses of the central black holes in galactic nuclei scale approximately with the fourth power of the bulge velocity dispersion. It is shown here that these relations can be accounted for if, in a forming galaxy with an isothermal mass distribution, gas with a column density above about 8 Msun/pc^2 goes into stars while gas with a column density above about 2 g/cm^2 (10^4 Msun/pc^2) goes into a central black hole. The lower critical value is close to the column density of about 10 Msun/pc^2 at which atomic gas becomes molecular, and the upper value agrees approximately with the column density of about 1 g/cm^2 at which the gas becomes optically thick to its cooling radiation. These results are plausible because molecule formation is evidently necessary for star formation, and because the onset of a high optical depth in a galactic nucleus may suppress continuing star formation and favour the growth of a central black hole.Comment: Accepted by Nature Physic

    Feasibility of identifying families for genetic studies of birth defects using the National Health Interview Survey

    Get PDF
    BACKGROUND: The purpose of this study was to determine whether the National Health Interview Survey is a useful source to identify informative families for genetic studies of birth defects. METHODS: The 1994/1995 National Health Interview Survey (NHIS) was used to identify households where individuals with two or more birth defects reside. Four groups of households were identified: 1) single non-familial (one individual with one birth defect); 2) single familial (more than one individual with one birth defect); 3) multiple non-familial (one individual with more than one birth defect), and 4) multiple familial (more than one individual with more than one birth defect). The March 2000 U.S. Census on households was used to estimate the total number of households in which there are individuals with birth defects. RESULTS: Of a total of 28,094 households and surveyed about birth defects and impairments, 1,083 single non-familial, 55 multiple non-familial, 54 single familial, and 8 multiple familial households were identified. Based on the 2000 U.S. census, it is estimated that there are 4,472,385 households where at least one person has one birth defect in the United States and in 234,846 of them there are at least two affected individuals. Western states had the highest prevalence rates. CONCLUSIONS: Population-based methods, such as the NHIS, are modestly useful to identify the number and the regions where candidate families for genetic studies of birth defects reside. Clinic based studies and birth defects surveillance systems that collect family history offer better probability of ascertainment

    Arthroscopic Treatment of Acetabular Retroversion With Acetabuloplasty and Subspine Decompression: A Matched Comparison With Patients Undergoing Arthroscopic Treatment for Focal Pincer-Type Femoroacetabular Impingement.

    Get PDF
    BackgroundGlobal acetabular retroversion is classically treated with open reverse periacetabular osteotomy. Given the low morbidity and recent success associated with the arthroscopic treatment of femoroacetabular impingement (FAI), there may also be a role for arthroscopic treatment of acetabular retroversion. However, the safety and outcomes after hip arthroscopic surgery for retroversion need further study, and the effect of impingement from the anterior inferior iliac spine (subspine) in patients with retroversion is currently unknown.HypothesisArthroscopic treatment for global acetabular retroversion will be safe, and patients will have similar outcomes compared with a matched group undergoing arthroscopic treatment for focal pincer-type FAI.Study designCohort study; Level of evidence, 2.MethodsPatients undergoing hip arthroscopic surgery for symptomatic global acetabular retroversion were prospectively enrolled and compared with a matched group of patients undergoing arthroscopic surgery for focal pincer-type FAI. Both groups underwent the same arthroscopic treatment protocol. All patients were administered patient-reported outcome (PRO) measures, including the 12-item Short-Form Health Survey (SF-12) Physical Component Summary (PCS) and a Mental Component Summary (MCS), modified Harris Hip Score (mHHS), Hip disability and Osteoarthritis Outcome Score (HOOS), and visual analog scale (VAS) for pain preoperatively and at 1 year postoperatively.ResultsThere were no differences in age, sex, or body mass index between 39 hips treated for global acetabular retroversion and 39 hips treated for focal pincer-type FAI. There were no major or minor complications in either group. Patients who underwent arthroscopic treatment for global acetabular retroversion demonstrated similar significant improvements in postoperative PRO scores (scores increased by 17 to 43 points) as patients who underwent arthroscopic treatment for focal pincer-type FAI. Patients treated for retroversion who also underwent subspine decompression had greater improvement than patients who did not undergo subspine decompression for the HOOS-Pain (33.7 ± 15.3 vs 22.5 ± 17.6, respectively; P = .046) and HOOS-Quality of Life (49.7 ± 18.8 vs 34.6 ± 22.0, respectively; P = .030) scores.ConclusionArthroscopic treatment for acetabular retroversion is safe and provides significant clinical improvement similar to arthroscopic treatment for pincer-type FAI. Patients with acetabular retroversion who also underwent arthroscopic subspine decompression demonstrated greater improvements in pain and quality of life outcomes than those who underwent arthroscopic treatment without subspine decompression

    Fundamental Strings, Holography, and Nonlinear Superconformal Algebras

    Get PDF
    We discuss aspects of holography in the AdS_3 \times S^p near string geometry of a collection of straight fundamental heterotic strings. We use anomalies and symmetries to determine general features of the dual CFT. The symmetries suggest the appearance of nonlinear superconformal algebras, and we show how these arise in the framework of holographic renormalization methods. The nonlinear algebras imply intricate formulas for the central charge, and we show that in the bulk these correspond to an infinite series of quantum gravity corrections. We also makes some comments on the worldsheet sigma-model for strings on AdS_3\times S^2, which is the holographic dual geometry of parallel heterotic strings in five dimensions.Comment: 25 page

    Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting

    Get PDF
    We present an analytical method to quantify clustering in super-resolution localization images of static surfaces in two dimensions. The method also describes how over-counting of labeled molecules contributes to apparent self-clustering and how the effective lateral resolution of an image can be determined. This treatment applies to clustering of proteins and lipids in membranes, where there is significant interest in using super-resolution localization techniques to probe membrane heterogeneity. When images are quantified using pair correlation functions, the magnitude of apparent clustering due to over-counting will vary inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. Over-counting does not yield apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (Fc{\epsilon}RI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM) and scanning electron microscopy (SEM). We find that apparent clustering of labeled IgE bound to Fc{\epsilon}RI detected with both methods arises from over-counting of individual complexes. Thus our results indicate that these receptors are randomly distributed within the resolution and sensitivity limits of these experiments.Comment: 22 pages, 5 figure

    Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption

    Get PDF
    A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free convection boundary layer flow of an incompressible third grade viscoelastic fluid past an isothermal inverted cone in the presence of magnetohydrodynamic, thermal radiation and heat generation/absorption. The transformed conservation equations for linear momentum, heat and mass are solved numerically subject to the realistic boundary conditions using the second-order accurate implicit finite-difference Keller Box Method. The numerical code is validated with previous studies. Detailed interpretation of the computations is included. The present simulations are of interest in chemical engineering systems and solvent and low-density polymer materials processing

    The ethics of uncertainty for data subjects

    Get PDF
    Modern health data practices come with many practical uncertainties. In this paper, I argue that data subjects’ trust in the institutions and organizations that control their data, and their ability to know their own moral obligations in relation to their data, are undermined by significant uncertainties regarding the what, how, and who of mass data collection and analysis. I conclude by considering how proposals for managing situations of high uncertainty might be applied to this problem. These emphasize increasing organizational flexibility, knowledge, and capacity, and reducing hazard
    • …
    corecore